
� American Scientist, Volume 97

Macroscope

How Do Scientists Really Use Computers?

Gregory Wilson

Computers are now essential
tools in every branch of sci-

ence, but we know remarkably little
about how—or how well—scientists
use them. Do most scientists use off-
the-shelf software or write their own?
Do they really need state-of-the-art
supercomputers to solve their prob-
lems, or can they do most of what they
need to on desktop machines? And
how much time do grad students re-
ally spend patching their supervisors’
crusty old Fortran programs?

To answer these questions, my col-
leagues and I ran a Web-based survey
during the last two months of 200�.
We were surprised and gratified that
almost 2,000 people took the time to
tell us what they were doing. We were
equally surprised by what they told us.

Who Responded
First, a few facts about who answered.
Thirty-one percent told us they were
from the United States, 20 percent
from Canada, and � percent from the
United Kingdom. Germany and Nor-
way came next with 7 percent and 6
percent respectively, while the rest of
the world made up the remaining 2�
percent. The high representation from
Canada and Norway reflects the fact
that my colleagues and I are based
there, while the low response rate from
areas such as Russia and East Asia is
undoubtedly due to the fact that we
only advertised the survey in English-
language channels.

Thirty-three percent of respondents
were 1� to 30 years old; 35 percent
were 30 to 40, and 17 percent were 40
to 50. The remaining 15 percent were

over 50 or, in the case of 15 respond-
ents, didn’t answer. These figures are
consistent with reports about degrees:
Seventy-one percent had a Ph.D. or
equivalent, with 1� percent reporting
at least an M.Sc.

When asked to identify their roles,
over half of our 1,972 respondents
chose more than one category (be-
low)—which is probably an accurate
reflection of how many jobs working
scientists actually do.

Respondents’ descriptions of their
disciplines were much more diverse.
Roughly 150 identified themselves
as physicists, but no other discipline
made up more than 5 percent of the
sample. These figures are necessarily
imprecise, since we had to make a lot
of judgment calls when coding them.
For example, should astrophysics be
classified as a separate discipline from
astronomy and physics? If so, what
about plasma physics? And how ex-
actly do we count “theological engi-
neering”? (In the end, we discarded
that response entirely.)

Getting the Answers
So what did these people tell us? First,
respondents work an average of 4�
hours a week, of which 30 percent
is spent developing software and 40
percent is spent using it. They also re-

Greg Wilson is an adjunct professor of computer
science at the University of Toronto. His course
material is available at http://www.third-bit.com/
swc. Address: Room 3230, Bahen Centre for In-
formation Technology, University of Toronto, To-
ronto, Ontario, M5S 2E4. Internet: gvwilson@
cs.utoronto.ca

A Web-based
survey offers

clues

2009 September–October 9www.americanscientist.org

port that these proportions are going
up—45 percent of respondents say that
scientists spend more or much more of
their time developing scientific soft-
ware than they did 5 years ago, and
70 percent say that they spend more
or much more time using it. These an-
swers are much higher than we expect-
ed, and probably signal that our (self-
selected) respondents use computers
more than the “average” scientist (if in
fact there is such a thing).

Second, most scientists generate and
archive a few gigabytes of data each
year. This answer was more popular
than all the others together, which were
“a few megabytes,” “a few terabytes”
and “more than a few terabytes.” One
thing we didn’t ask (but should have)
was how that data is archived: Is it
stored in a Web-accessible database
with searchable metadata, or on a DVD
stuck in the bottom drawer of some-
one’s desk? Personal experience tells us
the latter is far more likely….

Third, most of the software that sci-
entists work with is widely used: Only
10 percent reported that the programs
they rely on are used by three or few-

er people. When we asked where that
software comes from, though, they re-
ported “commercial off-the-shelf soft-
ware,” “open source” and “we build it
ourselves” in almost equal numbers.

It’s interesting to compare the latter
answers with those given for another
question. Fifty-eight percent of scien-
tists reported that they do development
on their own; 17 percent work with one
other person, and 1� percent in teams of
3 to 5 people, while only 9 percent work
in larger groups. These numbers are the
reverse of what would be expected for
professional software developers, who
usually work in teams. They also ex-
plain the relatively low uptake among
scientists of collaborative tools like ver-
sion control, which most professional
software developers consider essential:
If you expect to work alone, why invest
in tools for working with others?

The prevalence of solo and small-
team work is consistent with another
finding. Roughly 3� percent of the pro-
grams scientists write are between 500
and 5,000 lines long; smaller programs,
and programs between 5,000 and 50,000
lines long, each make up about a quar-

ter of the total, while larger programs
account for the remaining 12 to 15
percent. To look at it another way, two
thirds of the programs used by these
scientists are less than 5,000 lines long.

The hardware scientists use is just as
interesting. Eighty-one percent prima-
rily use desktop machines; only 13 per-
cent use intermediate-sized machines
such as departmental Linux clusters,
and a mere 6 percent use supercom-
puters. This is consistent with their
reports about how they use comput-
ers: Most said that interactive use was
most common, followed by prepar-
ing and reformatting data, preparing
things for batch processing, and finally
systems administration.

As for what occupied the most of
our respondents’ time, coding and de-
bugging took first place. Planning and
quality assurance tied for second place,
reading/reviewing code came third,
documenting fourth, and packaging
software came last. It is ironic to com-
pare this complaint with answers to
another question: What “pain points”
hurt you most? Lack of documentation
was the number-one answer for more

10 American Scientist, Volume 97

than 40 percent of respondents, and in
the top three for �0 percent.

Where do scientists learn how to
develop software and use computers
in their research? Almost all said that
informal self-study had been most im-
portant. Peer mentoring came second,
with formal instruction at school or on
the job trailing well behind.

To close off, we wanted to find out
how good scientists are at developing
and using software. However, self-
 assessment is notoriously unreliable, and
administering a proficiency test over the
web would have been impractical. We
therefore asked our respondents to rate
how well they felt they understood vari-
ous aspects of software development,
and how important those aspects are.

The results were consistent with
answers given to other questions. In
most areas—requirements, design,
maintenance, product management
and project management—scientists
reported that they knew as much as
they felt they needed to know. This isn’t
surprising: Scientists are usually their
own customers, and as our findings
about team and program size suggest,
those who develop software are creat-
ing small programs for their own use.
Skills relevant to large projects done for
other people are therefore unlikely to
loom large in their minds.

The three areas in which respond-
ents felt they didn’t know as much as
they should were, in order of increasing
gap, software construction, verification
and testing. Again, this isn’t surprising,
since the whole point of science is to
be able to prove that your answers are
valid--and that requires confidence in
the methods and tools used to get them.
The necessity of keeping test tubes clean
and calibrating equipment is drilled
into students from high school onward,
but most are uncomfortably aware that
we know a lot less about how to ensure
that software is correct. The fact that
there always seems to be one more bug
to fix only reinforces the feeling.

Helping Those Who Need It
Our results can be interpreted in many
ways, but I think two things are clear.
The first is that if funding agencies, ven-
dors and computer science researchers
really want to help working scientists
do more science, they should invest
more in conventional small-scale com-
puting. Big-budget supercomputing
projects and e-science grids are more
likely to capture magazine covers, but
improvements to mundane desktop
applications, and to the ways scientists
use them, will have more real impact.

My second conclusion is that we’re
not doing nearly enough to teach scien-

tists how to use computers effectively as
research tools. One reason for this fail-
ure is that commercial software devel-
opment tools and practices often don’t
fit the needs of people doing explora-
tory research in domains where years
of training are required to understand
the problems being solved. At the same
time, university science and engineer-
ing departments feel their curricula are
already overfull. As a physicist said to
me some years ago, “What should we
take out to make room for more pro-
gramming—thermodynamics or quan-
tum mechanics?” Figuring out how to
square these circles is, in my opinion,
the only grand challenge in scientific
computing that really matters.

Acknowledgments
This work was made possible by a grant
from The MathWorks, Inc. I’d like to thank
my co-investigators, as well as Jon Pipi-
tone and Dr. Laurel Duquette, who helped
with data coding and analysis.

Bibliography

Hannay, Jo Erskine, Hans Petter Langtangen,
Carolyn MacLeod, Dietmar Pfahl, Janice
Singer and Greg Wilson. 2009. “How Do
Scientists Develop and Use Scientific Soft-
ware?” Proceedings of the Second Interna-
tional Workshop on Software Engineering
for Computational Science and Engineer-
ing. New York: IEEE Press.

