
Software Carpentry Assessment Report

Jorge Aranda

July 4th, 2012

Contents

1 Executive Summary 2

2 Introduction and Methodology 3

3 Analysis of Software Carpentry’s Impact 6

3.1 Survey data . 6
3.2 Interview and observation data . 11
3.3 Summary of ϐindings . 19

4 Recommendations 20

4.1 Workshop improvement . 20
4.2 Subsequent assessments . 21

A Survey template 23

B Interview scripts 27

1

Chapter 1

Executive Summary

This report summarizes a six-month effort to assess the efϐicacy of the Software Car-
pentry program. Through a mixed-methods approach, including surveys, pre- and
post-workshop interviews, workshop observations, and screencast analysis, this as-
sessment concludes that the key premises for the usefulness of Software Carpentry
instruction hold true: most scientists are self-taught programmers, they have funda-
mental weaknesses in their software development expertise, and these weaknesses
affect their ability to answer their research questions.
More importantly, this assessment concludes that Software Carpentry instruction
helps scientists eliminate these weaknesses. The program increases participants’
computational understanding, as measured by more than a two-fold (130%) im-
provement in test scores after theworkshop. Theprogramalso enhances their habits
and routines, and leads them to adopt tools and techniques that are considered stan-
dard practice in the software industry. As a result, participants express extremely
high levels of satisfactionwith their involvement in SoftwareCarpentry (85% learned
what they hoped to learn; 95%would recommend the workshop to others).
While the outcome is largely positive, there are areas for improvement. Two of note
are the spread in expertise among participants and the barriers that they face to
change their software practice. The ϐirst problem leads to some participants feel-
ing that the instruction is too advanced or too basic for them. The second problem
damages the impact of Software Carpentry instruction, as participants learn valu-
able material, but ϐind that for other reasons they are unable to adopt the relevant
tools and techniques. Both problems, and other minor issues identiϐied, can be ad-
dressed by the Software Carpentry team in subsequent versions of their workshop.

2

Chapter 2

Introduction and Methodology

Themission of the Software Carpentry program is to help scientists bemore produc-
tive by teaching them basic computing skills. Software Carpentry aims to achieve
this through short, intensive workshops (bootcamps) and self-paced online instruc-
tion.
Over the years in which Software Carpentry has been offered, informal feedback,
anecdotal experience, and word of mouth enthusiasm, have suggested that scien-
tists beneϐit from the program, but there has not been an effort directed speciϐically
to assess its impact, nor its underlying assumptions about the computing needs of
scientists. From January to June 2012, I was engaged to carry out two tasks: to con-
duct an assessment of the program, using a mixed-methods approach, in order to
evaluate its impact on workshop participants and its areas for improvement, and
to construct a repeatable, systematic, and efϐicient assessment strategy that can be
used in subsequent workshops. This document presents the result of the work in
those two fronts.
This assessment of the Software Carpentry program had two main goals:

1. To inform the Software Carpentry team whether the instruction has the de-
sired impact, and the areas inwhich the program could be improved for future
iterations of the workshop.

2. To formulate a long-term repeatable, systematic, and sustainable evaluation
process to be applied by researchers and workshop organizers in the future.

3

In order to satisfy these goals, the assessment project used a combination of quan-
titative and qualitative data collection and analysis, consisting of the following:

• Pre- and post-workshop surveys of participants from eight different work-
shops in Canada, the United States, and the United Kingdom (a survey of a
ninth workshop is still under way).

• Interviews of participants from ϐive different workshops in Canada and the
United States.

• Fly-on-the-wall observations of one workshop.

• Analysis of screencasts recorded by workshop participants as they worked
through a programming assignment.

In parallel, Professor Julie Libarkin fromMichigan State University performed a de-
tailed assessment of participants in the workshop held there (which was also at-
tended remotelyby students fromtheUniversity ofTexas atAustin). ProfessorLibarkin’s
report is independent from this work; nevertheless some of her ϐindings are men-
tioned in this report where appropriate.
The pre- and post-workshop surveys were conducted online, using LimeService1
as the hosting service. A pilot of the survey was tested with University of British
Columbia students, and later reϐined. Participants from a total of eight workshops
participated in the survey.2 Pre-workshop survey invitations were sent roughly one
week before the start of the corresponding workshop; post-workshop invitations
were sent between threeweeks and threemonths after completion of theworkshop,
in order to give participants enough time to digest thematerial and for any effects of
the workshop to begin establishing in their daily lives. Participation was voluntary
but not anonymous.
The survey asked questions regarding the software development habits of respon-
dents, the tools they were familiar with, their level of knowledge of ϐive core Soft-
ware Carpentry topics (shell commands, Python, version control, SQL, and testing

1http://www.limeservice.com/
2These were held at Indiana University, Michigan State University, the Monterey Bay Aquarium

Research Institute, NERSC, Utah State University, the University of Alberta, the University of British
Columbia, and the University of Newcastle.

4

concepts), and their challenges in using scientiϐic computing to answer their re-
search questions. Appendix A presents the full survey template. We collected 278
responses to the survey in total.
Concurrently, we interviewed participants from ϐive workshops.3 There were pre-
workshop interviews, interviews during one workshop, and post-workshop inter-
views. Interviews lasted between ϐifteen minutes and one hour; there was a total of
69 interviews. All interviews except the more informal ones (those carried out dur-
ing a workshop) were semi-structured, and either recorded or annotated, and later
analyzed to examine patterns, similarities, differences, and improvement proposals
offered by participants. Appendix B shows the standard questions asked during in-
terviews; note that in practice interviews frequently deviated from this script as the
situation demanded.
Workshop observations took place at the National Energy Research Scientiϐic Com-
puting Center (NERSC) at Berkeley, California, in March 28th and 29th. While it was
possible to conduct some informal interviews during the workshop, the aim of the
visit was to observe the workshop instruction and the reactions from participants.
Theseobservationsofferedanopportunity tounderstand the level ofwhat is feasible
during a two-day window, the background of workshop participants, their expecta-
tions, and their problems as they attempt to follow the instruction.
Finally, we performed an analysis of seven screencast recordingsmade byworkshop
participants as they worked through a programming assignment. Participants were
asked to think aloud as they worked through their assignment, and to avoid editing
their screencasts in order to capture amore accuratepicture of their thought process
and challenges. The goal of these screencast analyses was to evaluate the prospect
of using a similarmechanism as part of Software Carpentry’s assessment efforts; we
discuss their potential in section 4.2.

3At NERSC, the Space Telescope Science Institute, the University of Alberta, and the University of
British Columbia (twice).

5

Chapter 3

Analysis of Software Carpentry’s
Impact

3.1 Survey data

We had a total of 278 responses to our survey (an average of 35 per site). Of these,
191were pre-workshop responses, and 87were post-workshop responses (respec-
tively, an average of 24 and 11 per site). Since we asked for respondents’ names, we
were able to match the pre- and post-workshop data of 71 respondents. Since this
subset of our data provides both pre- and post-workshop responses from the same
people, it is of particular importance for our analysis. In the rest of the discussion,
we make a distinction between ϐigures from the “full set” (or FS) and the “paired
set” (or PS) of responses; the latter corresponding to the subset of 71 respondents
described above.
First, we analyzed the level of use of Software Carpentry tools and techniques. Re-
spondents rated their “level of use” of these tools and techniques, before and after
the workshop, in a scale with values Do Not Use, Sometimes, and Frequently. We
converted each of these levels into an ordinal and compared the difference before
and after the workshop; numerically, an increase of one unit is equivalent to a jump
of one level. The level of use of all tools and concepts, with the exception of SQL,
increased after the workshop. The particular ϐigures for all tools and techniques are
presented in Table 3.1.
The “quiz” items consisted of Yes/No questions, four per topic, that were purpose-

6

Response
set

Shell com-
mands

Python Testing Version
control

SQL

Full set +0.32 +0.21 +0.34 +0.31 -0.04

Paired set +0.29 +0.33 +0.34 +0.26 -0.01

Table 3.1: Change in the level of use of Software Carpentry topics

fully chosen so that only about half of them could be answered with the standard
material in the workshop; the other half was not covered by workshop instruction.
Additionally, a cross-cutting half could be answered with introductory familiarity
to the topic in question, while the other half would represent more advanced lev-
els of expertise. In other words, the quiz was designed so that there were an easy
and a hard question answerable through workshop instruction, and an easy and a
hard question not answerable through workshop instruction.1 The objectives for
this were to assess whether participants not only learned the workshop materials,
but were exploring the topics in greater depth on their own, and to avoid ceiling
effects in our survey.
Quiz performance improved across the board for all question categories, both for
the full set and for the paired set. Table 3.2 shows the mean performance of respon-
dents on the quiz questions, out of a score of 100 marks. As can be seen by these
numbers, improvement was considerable and fairly uniform, with the exception of
testing concepts, which improved less than the others.
To analyze the “needed for work” questions, in which respondents rate the rele-
vance of several core Software Carpentry tools and concepts in a scale with values
I Don’t Know What This Is, Unimportant, Marginal, and Important, we converted
each of these levels into numerical values (where the ϐirst two categories equal zero,
Marginal equals one, and Important equals two), and compared the difference be-
fore and after the workshop. The relevance for our respondents’ work of all tools
and concepts increased, albeit in the case of SQL and Python the increase was negli-
gible for one of our two sets. The particular ϐigures for all tools and techniques are
presented in Table 3.3.
More people had an online presence inGitHub, BitBucket, or StackOverϐlowafter the
workshop thanbefore (+36.9%morepeople in the full set, +36.8% in the paired set).

1In practice this was hard to achieve, given that different workshops approached topics in a
slightly different manner, partly due to participants’ questions.

7

Response set Before After Difference
Shell commands

Full set 45.3 75.2 +29.9

Paired set 43.7 76.1 +32.4
Python

Full set 33.7 63.4 +29.7

Paired set 30.3 65.4 +35.1
Testing

Full set 11.7 23.8 +12.1

Paired set 9.5 24.6 +15.1
Version control

Full set 15.2 46.4 +31.2

Paired set 10.2 44.5 +34.3
SQL

Full set 23.4 48.2 +24.8

Paired set 19.0 49.6 +30.6

Table 3.2: Mean quiz performance

8

Response
set

Shell com-
mands

Python Testing Version
control

SQL

Full set +0.15 +0.03 +0.43 +0.44 +0.01

Paired set +0.07 +0.20 +0.36 +0.41 +0.14

Table 3.3: Change in the relevance of Software Carpentry tools and techniques in the
work of its participants

Response set Before After

Full set 46.99 45.60

Paired set 46.33 46.17

Table 3.4: Mean work hours per week

Thismay point to an increased engagementwith communities of developers around
the world, and to a greater adoption of version control tools and environments.
As Table 3.4 shows, themean number of work hourswas practically the same before
and after theworkshop. Table 3.5 presents the ϐigures forwork hours spentworking
on creating or modifying software; they remained stable with a slight increasing
trend.
Informal assessments of hours gainedor lostwere for themost part uncertain. Many
people said it was still too early to tell howmany hourswere gained or lost by partic-
ipating in the workshop. Among the few that claim a loss (8 from 87 post-workshop
responses), the reasons are longer-term payoff (that is, that attending theworkshop
will probably pay off, but it still has not, usually because theworkshop happened too
recently), or further learning investments (that is, that they are still putting in time
to learn some computational tools more deeply or installing infrastructure, and that
larger investment has not yet ϐinished paying off). Among those that already claim

Response set Before After

Full set 11.70 13.24

Paired set 11.36 11.83

Table 3.5: Mean work hours per week spent working on software

9

a gain (15 out of 87 post-workshop responses), the number of hours tends to fall in
the 1hr-5hr weekly range.
Overall, 13 out of 87 (15%) post-workshop respondents (approximately; the survey
responses are a bit subjective in this regard) point to new research questions or
new computational approaches that they are able to take on thanks to the Software
Carpentryworkshop. A larger number says that it is too soon to answerwhether the
workshop has opened new research horizons for them.
Survey respondents report a wide variety of habit changes and other beneϐits from
taking the workshop. Roughly, these fall on the following categories:

• Proϐiciency with the tools covered in the workshop (shell, version control,
Python, SQL).

• Regular use of computing tools (shell scripting, version control).

• Greater concern with scientiϐic computing issues (provenance, more rigorous
testing).

• Improvements in the respondent’s approach to develop software (efϐiciency
in programming, control in length of programming sessions, test-driven de-
velopment, automated testing, better requirements/problem statement deϐi-
nition, code structure).

• Improvements in the respondent’s outlook towards developing software (bet-
ter code comprehension, higher conϐidence in one’s own ability to program,
better perspective on roadmap for learning to design software).

Survey respondents on the paired set have interesting changes regarding research
goals they cannot or could not attain due to a lack of computational skill.2 For 11
respondents, the original challenge remains in some form. For 7 respondents, the
old challenges disappeared, andnewchallenges arementioned. For 10 respondents,
the new challenge description appears to be a reϐinement over the old, with a clearer
computational statement of what is needed to tackle the challenge. Finally, 20 re-
spondents reported a challenge before theworkshop, but the challenge disappeared
after the workshop. This represents a total of 48 paired responses for which this
analysis was viable, out of 71 paired respondents.

2Note that analysis of these is necessarily subjective.

10

The “reasons for inaction” responses were not amenable to analysis. They were too
scattered, inconsistent before and after the workshop, or besides the point actually
being asked. This question, at least in its present form, should be dropped in further
evaluations.
Professor Libarkin’s own study provides additional support for these ϐindings. Her
post-workshop surveywas administered immediately after the endof theworkshop,
so she could not explore the adoption of new habits nor the shift in research ques-
tions that we probed in our survey. She reports the following:

• Prior to instruction, participants expressed either no or low ability in compu-
tational ability (1.73± 0.49; where 1 represents No Ability and 4 represents
High Ability).

• Participantsperceivedgreater computational understanding after engagement
in the workshop (an increase from 2.26 to 2.91, where 1 implies Low Under-
standing and 4 implies High Understanding).

• Participants perceived greater Python coding ability after engagement in the
workshop (from 2.48 to 3.00, same scale as above).

• Participants were generally very satisϐied with the workshop (81% felt their
computational understanding changed; 85%felt they learnedwhat theyhoped
to learn).

• Participants generally felt theworkshopmet their needs andwouldoverwhelm-
ingly (95%) recommend it to others.

In every point, these ϐindings lend further support to the ϐindings in this report.

3.2 Interview and observation data

There were 69 interviews in total (38 pre-workshop, 12 during a workshop, and 19
post-workshop). These interviews, along with the workshop observation carried
out at NERSC, allowed us to determine our interviewees’ abilities and grasp of sci-
entiϐic computing issues before and after the workshop.
Overall, interview data conϐirm several key assumptions of the Software Carpentry
program:

11

A large portion of scientiϐic computing researchers are self-taught programmers.
Typically, participants have had between zero and two introductory courses to Com-
puter Science or programming, and their knowledge of programming arises from
their practical researchneeds. In fact, as the experienceofmany interviewees shows,
to date one can still have a successful research career, in which one quarter of one’s
time (ormore) goes into creating andmodifying software, andyet haveneverworked,
been advised by, been trained by, or been in even infrequent consultation with pro-
fessional software developers.
Scientiϐic computing researchers are not familiar with basic software develop-
ment tools and techniques. Workshop participants may have a sophisticated con-
trol of a particular tool, either generic or specialized for their particular niche, but
that does not entail expertise in software development in general. It was common
to ϐind participants that, before theworkshop intervention, had never heard of tools
that professional developers take for granted, such as the shell, version control, or
SQL. Among those familiar with the terms, it was also common to ϐind researchers
who did not see the point in using them.
In this sense, software testing was most problematic. It was rare to ϐind partici-
pants who had any kind of automated or regression tests for their code. Reasons for
not testing abound—the typical ones are that the scripts produced are too small to
have errors, that one does not know their answers in advance and therefore cannot
automate the testing process, and that given the nature of the code produced (sim-
ulations looping a great number of times) any errors in the code are immediately
apparent through simple inspection.
These shortcomings reduce scientists’ ability to answer their research questions.
One interviewee, for example, lamented that nobody in his lab (including himself)
had the computing expertise needed to troubleshoot software development issues;
he would reportedly spendweeks solving issues that he felt should have been trivial
for a competent software developer. Another explained that he was sure he was
extremely inefϐicient in his programming, but that never having seen a professional
developer at work, he did not know how expertise looked like, and what would be a
good way to focus his learning efforts. Several scientists pointed out that the reason
why they registered to the Software Carpentry workshop is because their ϐield is
becoming increasingly computational, and they feel they are being left behind.
Researchers that are less aware of their computational weaknesses are also affected
by them, but they are generally unable to describe their missed potential. When dis-
cussing computational problems they describe issues that are easily tackled through

12

Software Carpentry tools; sometimes they describe a problematic situation without
realizing that it is problematic.
Attendance to a SoftwareCarpentryworkshophelps eliminate theseweaknesses.
The survey responses described in Section 3.1 point to several beneϐits of the Soft-
ware Carpentry intervention, and the collected interview data conϐirm these ben-
eϐits. Software Carpentry participants claim that the workshop has helped them
identify their computational weaknesses, that through direct instruction it has con-
tributed to mitigate those weaknesses, that it has shown them where and how can
they continue to learn more, and that it has enabled them to effect larger changes in
their labs and working groups.
One of the topics that found the most traction among scientists is version control.
Before the workshops, version control tools were generally dismissed by intervie-
wees as not applicable to their case or too much of a bother. After the workshops,
many interviewees, aswell as their research labs or groups, either got a version con-
trol repository installed and in use, or are planning to do so for their next project. To
a lesser extent this was also true for the use of Python, of shell commands and shell
scripts, and of testing practices.
Interviewees also claim to have improved their assessment of their computing skills,
and to have gotten practical knowledge on how to improve them. Interviewees state
that their code is better structured now, that they are better able to control the du-
ration of their programming sessions, and to work in shorter cycles. In general, the
beneϐits listed by participants during interviews are similar to those found in the
surveys.
The interviews and observations also helped us identify strengths and weaknesses
with the current version of the workshops and online instruction. Several of the
most signiϐicant ϐindings in this regard are the following:
Enthusiasm for Software Carpentry. Participants were overwhelmingly enthusi-
astic about the Software Carpentry program, the Software Carpentry team, and the
pedagogical approach, and theywantmoreSoftwareCarpentry engagements in their
venues. They claimed that they were extremely glad to have taken the workshop,
that they wished to have taken it years before, and that they would recommend it to
other people. Two interviewees said that they were fascinated that the workshop
was available for free. Not a single interviewee (there were 19 post-workshop in-
terviews) deviated from this trend.
Participantswere also enthusiastic about the instructors and their pedagogical style.

13

The importanceof anappropriate instructorwasbroughtup several times: thework-
shop coversmuch ground in a short time, and for interviewees it was a relief to have
instructors that made the material entertaining, compelling, and useful at the same
time.
Barriers to adopt Software Carpentry tools and techniques. In many cases, work-
shop participants faced signiϐicant barriers to adopt Software Carpentry tools and
techniques in their daily work, and by the time of their interviews they had not yet
surmounted them, would not know how to do so, or judged that tryingwas not cost-
effective.
These barriers are of three kinds: infrastructural, organizational, and habit-based.
Infrastructural barriers consist of technical problems that cannot be solved with-
out more resources or greater skills than the interviewee currently possesses. For
example, the participant may be convinced of the value of version control, but she
has no access to a system administrator, does not know how to set up a server, and
everything that she reads online about how to do it confuses her further.
Organizational barriers consist of mismatches between the new-found conviction
of workshop participants and the dynamics in their labs. The participant may be
convinced, again, of the value of version control, but none of their peers is, and she
must abandon her attempt to institute a version control-based collaboration.
Habit-based barriers consist of the ingrained habits of workshop participants them-
selves: the challenge is not external (neither technical or organizational), but inter-
nal. For example, the participant is convinced of the value of proper testing, but
she is not used to doing so, and for her next scripts, which she needs to complete
as quickly as those she has written in the past, she does what she always does and
what has beenmoderately successful in the past, and she again forgets to test as she
meant to do.
These barriers to adoption are not universal (some participants changed their work
practices signiϐicantly since theworkshop), but theyarewidespread. Efforts to counter
them should be part of the next iteration of Software Carpentry workshops.
Variety of participants and instruction pace. Bootcamps face the challenge of ϐind-
ing an adequate instruction pace, as participants have widely varying levels of ex-
pertise. For each of the workshop components there are novices and veterans, and
this is problematic for instruction: the instructor wants to bring everyone ahead,
but aiming for the average participants means that manywill still be left behind and
many will ϐind the content too basic. Problems of skill variation were brought up

14

several times by interviewees.
Most other characteristics of participants also vary widely. Participants come from
different domains, have different research goals, different roles, and needs. Reach-
ing all of them is difϐicult.
“Strategic” lessons about development practice. The Software Carpentry program
attempts to teach several principles for scientiϐic computing, and to transmit a num-
ber of recommendations for computational scientists.3 However, while this goal is
not covert, it is not usually broadcasted to potential workshop participants, under
the (correct, as interview data show) assumption that many potential participants
do not know that they need deeper lessons about computing, but they do know that
they need to learn a speciϐic tool or language.
The Software Carpentry website lists eleven principles and eleven recommenda-
tions, and the observations at the NERSC workshop allow us to examine the extent
to which transmitting these principles and recommendations along with the tech-
nical content is feasible in the limited time available. The following list presents all
the Software Carpentry principles and discusses their presence or absence at the
NERSC workshop:

1. Code is just a kind of data. Discussed brieϐly, under data and code provenance.

2. Metadata makes data easier to work with. Discussed brieϐly, under data and
code provenance.

3. Separate models and views. Not discussed.

4. Trade human time for machine time and vice versa. Discussed, in the context
that it is important to ϐigure out what would be faster: to program something
or to do it oneself; and that the answer depends on the speed of doing it and
the number of times one is expected to do it.

5. Anything that’s repeated will eventually be wrong somewhere. Discussed re-
peatedly, almost verbatim.

6. Programming is about creating and composing abstractions. Discussed, in the
context of function creation.

3http://software-carpentry.org/2012/01/the-big-picture-2/

15

7. Programming is about feedback loops at different timescales. Discussed, when
talking about the state of ϐlow, small tasks, and large tasks, although the em-
phasis was on the timescales, not on the feedback loops.

8. Good programs are the result of making good techniques a habit. Discussed at
length. Thinking about habits was central to the instruction at the workshop.
For example, therewere repeatedmentions of a version control habit (update,
merge, edit, commit), and of the test-before-code habit.

9. Let the computer decide what to do and when. Not discussed.

10. Sometimes you copy, sometimes you share. Discussed brieϐly, in the context of
Open Science.

11. Paranoia makes us productive. Discussed, in the context of test-driven devel-
opment.

Similarly, the following list shows which recommendations were explicitly formu-
lated to workshop participants at NERSC:

1. Use the right algorithms and data structures. Not discussed.

2. Use a version control system. Discussed at length.

3. Automate repetitive tasks. Discussed in several contexts, for instance, when
the instructor made a point about saving a list of likely repeatable shell com-
mands and putting them in a script.

4. Use a command shell. Discussed at length.

5. Use tests to deϔine correctness. Discussed at length.

6. Reuse existing code. Discussed, especially in the context about the ϐlexibility
and versatility of the “piping with small scripts” model.

7. Design code to be testable. Discussed brieϐly, in the context of test-driven de-
velopment.

8. Use structured data andmachine-readable metadata. Discussed in the context
of databases and SQL.

16

9. Separate interfaces from implementations. Not discussed.

10. Use a debugger. Discussed at length.

11. Design code for people to read. Discussed, in the context of structuring code
for readability and providing the right level and kind of comments.

As these lists show, a majority of the principles and recommendations found their
way into the 2-day NERSC workshop. Some of those that did not are an awkward ϐit
for the core Software Carpentry content, and it may only be feasible to incorporate
them if the core workshop materials are modiϐied.
Experienced participants pointed to these lessons as one of the reasons for them to
attend the workshop; they were also one of the most uniformly mentioned beneϐits
participants reported afterwards. Participants use several labels to describe these
strategic lessons (“programming hygiene”, “learning about the rhythms of software
development”, “philosophy of programming”, and so forth), referring to the same
push of Software Carpentry to instill better habits andworking practices in software
developers.
Seeing an expert at work. In a similar vein as the previous point, one of the most
cited observations frompost-workshop interviewswas that they learnedmuch from
seeing an experienced developer (the instructor) work through problems live and
thinking aloud. They claimed that this allowed them to better understand issues of
programming practice and code structure. Interviewees reported several beneϐits
associated with this instruction style: they claim they were able to reason about
their code better, to structure their code more appropriately, to incorporate testing
practices where they had not before, and to automate tasks. The interviews did not
probe the question of whether participants felt they would get similar beneϐits from
watching a recorded video or the expert at work.
Other beneϐits. Unprompted, several interviewees claimed to have reaped other
beneϐits from the workshop: the formation of local communities of like-minded en-
thusiasts, partly through online sessions; an improvement in self-conϐidence with
respect to computing skills, as the workshop demystiϐied some aspect of comput-
ing that they were now ready to deal with in their own terms; and knowledge of
sources where they could look for more information, which helped them deal with
the overabundance of esoteric technical information available on the Internet.
Effectiveargumentation. Inpost-workshop interviews, participantsmentioned three
kinds of arguments as compelling them to lend credence to the principles and rec-

17

ommendations advocated by Software Carpentry. First, discussions of ϐindings from
empirical software engineering. This is in contrast with the rejection to these ϐind-
ings that professional software developers often have, under claims that empirical
research does not accurately capture the complexities of their ϐield. Second, learn-
ing that a tool or technique is part of the toolset or a habit of professional software
developers. This is, in part, what many workshop attendees expected to ϐind from
the workshop, beyond the technical instruction. Third, an explanation of the under-
lying rationale for using the tools and techniques advocated by Software Carpentry.
These explanations, in the NERSC workshop, were often presented through a story
or anecdote, and interviewees stated that this approach worked for them.
Resources in the Software Carpentry website. Reactions to the materials in the
Software Carpentry website were varied, but mostly positive. At one end of the
spectrum, respondents said that the website did not give them information at the
level or in the format theywanted it. This was particularly true of more experienced
participants. At the other end, some participants found the material in the web-
site extremely useful. Opinion was polarized on whether the videos or the screen-
shot/transcript combination was better; in any case, these participants beneϐitted
from the website and recommended it to their peers.
Revisions to thematerial. Throughout the post-workshop interviews, respondents
raised issueswith threeof the core SoftwareCarpentry components. First, regarding
the Pythonmaterial, someof themore knowledgeable Pythonprogrammers felt that
the level of instruction did not do justice to its scientiϐic computing capabilities; that
if their peerswere to judge themerits of Python for scientiϐic computing on the basis
of what was presented in the workshop, the verdict would be unsatisfactory.
Second, many participants did not ϐind the SQL material useful or well connected to
their computational challenges. It is unclear if this disconnection is self-imposed, or
if SQL truly is not an appropriate solution for many scientiϐic computing challenges;
in any case it was perceived as such.
Finally, the version control tool of choice (Subversion) is falling out of fashion in this
community, and several participants expressed that they would have preferred to
learn about a distributed version control system instead, Git being mentioned most
frequently.

18

3.3 Summary of ϐindings

The aggregate of the survey data, as well as the interview and observation data,
strongly suggest that Software Carpentry workshop participants are satisϐied with
the program and that they get considerable beneϐits from attending. The workshop
helps them learn practical skills, and it also teaches them less technical but more
relevant lessons about computational thinking and proper software development
habits.
The collecteddata alsopoint to areasof improvement. Participant expertise iswidely
spread, and therefore the instruction pace is necessarily problematic for some atten-
dees. Some core topics need to be revised to increase their relevance for themajority
of workshop participants. Finally, the Software Carpentry program needs to evalu-
ate how to better help participants overcome the barriers to adoption of core tools
and techniques, in order to have an even larger impact in their research potential.

19

Chapter 4

Recommendations

The participants of the Software Carpentry program found the workshop beneϐicial
and useful, and all available data point to participant learning and improvement in
computational skills. Nevertheless, I collected several recommendations that I think
should be considered for future iterations of the workshop, and for further assess-
ment efforts.

4.1 Workshop improvement

Based on the survey, interview, observation, and screencast data collected in these
past sixmonths, I believe the SoftwareCarpentry teamshould consider the following
suggestions for improvement.

1. Divideworkshopparticipantsby level of expertise. Oneof themost common
suggestions for improvement that arose from the interview data is to have
participants self-select into a group of novice or advanced attendees. Self-
selection is problematic, as many participants will not be accurate judges of
their own expertise; one approach is to present participants with a brief but
concrete list of commands and concepts that they would be expected to be
familiar with in the advanced workshop.

2. Assist participants in overcomingbarriers to adoption. Several participants
struggled not with the course instruction, but with implementing the changes

20

that Software Carpentry advocates for in their daily lives. Amentorshipmodel
during the online sessions can be used to help them overcome these barriers.

3. Revisit workshop materials based on scientists’ needs. While most of the
material is current and relevant, three recommendations for revision arose
from this evaluation. First, the Python material does not delve into the real
advantages of Python as a tool for scientiϐic computing. Second, the SQL ma-
terial is perceived as less relevant by many participants. Third, the version
control tool of choice (Subversion) is not as popular as Git or Mercurial any-
more, and participants generally would like to start by learning the latter in-
stead of Subversion.

4. Increase hands-on andpeer-led learning. Participants expressed an interest
in doing more exercises during the bootcamps; the time allocated to do so in
theNERSCworkshop that I observedwas very limited. Some participants also
wanted more peer-led efforts, which can be cultivated via the post-workshop
online sessions.

5. Address installation and technical issues. One timewaster during the work-
shops is installing cygwin for participants that comewithWindowsmachines.
Despite pre-workshop warnings, several come without having installed cyg-
win; evenwhen they have, they oftenmiss the packages that theywill need af-
terwards. After the workshops, holding online sessions remains notoriously
riddled with technical issues, enough to turn people away from participation.

6. Revisit homework assignment design and evaluation. Homework assign-
ments for the online sessions are useful for participants, but two modiϐica-
tions would increase their value. First, whenever possible, they should be
better integrated with the particular kinds of problems and computational
challenges that participants face. Second, participants would appreciate get-
ting more (and more timely) feedback on the assignment code they produce,
in order to improve upon their practice.

4.2 Subsequent assessments

Performing this assessment was a fairly time-intensive project. It involved travel to
four locations and weeks of data collection and analysis. One of its goals, however,

21

was to formulate a better (more efϐicient, replicable, sustainable) strategy for sub-
sequent assessments. I recommend that subsequent program assessments adhere
to the following strategy:

1. Continue administering pre- and post-workshop online surveys. Maintain
the currentpre- andpost-workshoponline survey,withmodiϐications forwork-
shop content,with the additionof aquestion aboutworkshop satisfaction, and
with the elimination of the least informative questions (on “reasons for inac-
tion” and on “participation in online development communities”). Interview
data largely conϐirmed the ϐindings from the survey, suggesting that the sur-
vey can be used as the main evaluation instrument for the program.

2. Include a random sample of screencasts in the analysis. Have instructors
watch over a random selection of screencasts produced by participants af-
ter their workshop, where they address a programming task. The goal of
screencast analysis would not be to grade learning in the workshop, but to
help instructors understand the common obstacles and misunderstandings
that their participants face. Screencast analysis need not be systematic nor
formalized to have this effect.

3. Use interviews to validate survey data and assess satisfaction. Continue to
validate the usefulness of the survey by performing a limited amount of short
post-workshop interviews, conductedover thephone, equivalent to abouthalf
a day ofwork, including set-up, data collection and analysis (that is, about four
to six interviews). The goal of these interviews should be to gauge participant
satisfaction and to identifywhether Software Carpentry’s efforts atmitigating
the problems uncovered so far are being successful or not.

Altogether, these efforts should require approximately two days of work per work-
shop, and they need not be exerted for every workshop. They can all be carried out
by the instructor or by one of their helpers; the post-workshop questions in the in-
terview script in Appendix B should yield useful information to the interviewer, and
can be used as the basis for subsequent interviews.

22

Appendix A

Survey template

The following text and questions was presented to all survey respondents, with for-
matting differences to account for LimeQuery’s capabilities. All questions but the
ϐirst were optional.
Software Carpentry evaluation survey— Name of Venue

Thanks for helping us evaluate the Software Carpentry project. This survey should take
you 10-15minutes to respond. While you provide your answers, please remember that
you are not being graded! It will be most useful for us if you try and give your most
honest assessment on the following questions.

What is your full name? (We’ll apply this survey twice, and we need your name to
compare your answers between both applications)
What is your afϐiliation?
In a typical week, about how many hours do you work? (If you are a student, your
studies count as work.)
About how many of those hours do you spend creating, modifying, or testing soft-
ware?
Indicate your level of use of each of the following tools or techniques: Likert scale
with three values (Do Not Use, Sometimes, Frequently) plus a No Answer option.

• Shell commands

• Testing

23

• SQL

• Version control

• Python

Do you understand the following shell commands well enough to explain them to
somebody else? Options: Yes, No, No answer.

• ls data/*.txt

• sort elements.txt > elements.txt

• find ~-name `*.py'

• ps -A | grep mysample

Doyouunderstand the followingSubversion commandswell enough to explain them
to somebody else? Options: Yes, No, No answer.

• svn update

• svn merge -r 42:45 ../pathToTrunk

• svn move foo.py bar.py

• svn diff -r 1234

Do you understand the following Python commands well enough to explain them to
somebody else? Options: Yes, No, No answer.

• x = {`east' : 5, `west' : 11}

• [x**2 for x in aList]

• for i in range(len(aList)):

• __init__(self, *args)

24

Do you understand the following testing concepts well enough to explain them to
somebody else? Options: Yes, No, No answer.

• assertion

• exception

• ϐixture

• mock object

Do you understand the following SQL commands and concepts well enough to ex-
plain them to somebody else? Options: Yes, No, No answer.

• select * from data where data.left < data.right;

• foreign key

• drop table "logs"

• inner join

How important is each of the following items in your work? Likert scale with four
values (I don’t knowwhat this is, Unimportant, Marginal, Important) plus aNoAnswer
option.

• Shell commands

• Testing

• SQL

• Version control

• Python

25

Do you have research goals that you cannot attain because of a lack of computational
or programming expertise? If so, please elaborate.
If some of the tools or techniques above could make your work easier, but you have
not learned them in depth, please tell us why.
Have you completed a Software Carpentry workshop or bootcamp? Possible an-
swers: Yes, No, No answer. If the answer is Yes, the following three questions become
available.

Estimate how many hours have you gained or lost weekly as a result of the work-
shop. Please elaborate.
Can you think of computer-related things that you are doing differently than you
used to since taking the workshop? If so, please elaborate.
What scientiϐic results have you produced (or are you producing) that would have
been difϐicult, impossible, or out of reach before this training?
Are you registered on GitHub, BitBucket, and/or StackOverϐlow? Possible answers:
Yes, No, No answer. If the answer is Yes, the following question becomes available.

For those services for which you have registered (GitHub, BitBucket, and StackOver-
ϐlow), please give us your usernames.

26

Appendix B

Interview scripts

The following script was used for pre-workshop interviews:

• What is your position? What are your main responsibilities?

• Do you develop ormodify software? How frequently? For how long? Forwhat
purpose?

• Do you use the shell? How comfortable are you using it? Examples?

• Do you use Python? How comfortable are you using it? Examples? How about
other programming languages? How did you learn to use them?

• How do you manage the versions of your code and data? Do you use version
control software? For what purpose? How?

• Do you use databases?

• What other tools do you use? IDEs? What operating systems are you familiar
with?

• What can you tell me about your testing practices? Do you have automated
tests? How do you assess if your software behaves appropriately?

• Are you concerned about data or code provenance issues? What do you do
about it?

27

• If youwere explain to others how good software development looks like, what
would you say?

• What are you expecting to get from the workshop?

The post-workshop interviews covered the same ground, except for the last ques-
tion, which was substituted for the following set of questions:

• What were your impressions of the workshop? Both positives and negatives.

• Has anything changed in your approach to computing or software develop-
ment since you took the workshop? Please walk me through an example.

• Have your routines changed? In what ways?

• Did any of themore philosophical or strategic points that the instructor made
stick with you? If so, can you give me some examples?

• Are you tackling the same research questions? Have they evolved?

• Anything else you’d like to say?

Naturally, for those interviewees that were interviewed twice (before and after the
workshop), the background questions were not repeated.

28

