Software Carpentry Bibliography

January 19, 2014

References

[1]

Karen S. Ackroyd, Steve H. Kinder, Geoff R. Mant, Mike C. Miller, Chris-
tine A. Ramsdale, and Paul C. Stephenson. Scientific Software Develop-
ment at a Research Facility. IEEE Software, pages 44-51, July-August
2008.

Victor R. Basili, Danelia Cruzes, Jeffrey C. Carver, Lorin M. Hochstein,
Jeffrey K. Hollingsworth, Marvin V. Zelkowitz, and Forrest Shull. Un-
derstanding the High-Performance-Computing Community: A Software
Engineer’s Perspective. IEEE Software, 25(4):29-36, July 2008.

Susan M. Baxter, Steven W. Day, Jacquelyn S. Fetrow, and Stephanie J.
Reisinger. Scientific Software Development Is Not an Oxymoron. PLoS
Computational Biology, 2(9):e87, 2006.

Martin Blom. Is scrum and xp suitable for cse development? Procedia
Computer Science, 1(1):1511 — 1517, 2010.

Ronald F. Boisvert and Ping Tak Peter Tang, editors. The Architecture
of Scientific Software. Springer, 2001.

Alan Calder, Jonathan Dursi, Bruce Fryxell, Tomek Plewa, Greg Weirs,
Todd Dupont, Harry Robey, Jave Kane, Bruce Remington, Frank Timmes,
Guy Dimonte, John Hayes, Mike Zingale, Paul Drake, Paul Ricker, Jim
Stone, and Kevin Olson. Validating Astrophysical Simulation Codes.
Computing in Science & Engineering, 6(5):10-20, 2004.

J. C. Carver. Development of a Mesh Generation Code with a Graphi-
cal Front-End: A Case Study. Journal of Organizational and End-User
Computing, page 16, 2011.

Jeffrey Carver, Lorin Hochstein, Richard Kendall, Taiga Nakamura, Mar-
vin Zelkowitz, Victor Basili, and Douglass Post. Observations about
Software Development for High End Computing. CTWatch Quarterly,
2(4A):33-38, November 2006.

[9]

[10]

[13]

[14]

Jeffrey C. Carver. Post-Workshop Report for the Third International
Workshop on Software Engineering for High Performance Computing Ap-
plications. ACM Software Engineering Notes, 11(4):38-43, 2007.

Jeffrey C. Carver. First international workshop on software engineering
for computational science and engineering (secse08). In Proceedings of the
30th International Conference on Software Engineering (ICSE08), pages
1071-1072. ACM, 2008.

Jeffrey C. Carver. Second international workshop on software engineering
for computational science and engineering (secse09). In Proceedings of the
31st International Conference on Software Engineering (ICSE09), pages
484-485. TEEE, 2009.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E.
Post. Software Development Environments for Scientific and Engineering
Software: A Series of Case Studies. In Proceedings of the 29th Interna-
tional Conference on Software Engineering (ICSE07), 2007.

Jeffrey Clark Carver. Report from the Second International Workshop on
Software Engineering for Computational Science and Engineering. Com-
puting in Science & Engineering, 11(6):14-19, 2009.

T. L. Clune and K. Kuo. Test Driven Development: Lessons from a Simple
Scientific Model. AGU Fall Meeting Abstracts, page A1100, December
2010.

Carlton A. Crabtree, A. Gunes Koru, Carolyn Seaman, and Hakan Erdog-
mus. An Empirical Characterization of Scientific Software Development
Projects According to the Boehm and Turner Model: A Progress Report.
In Second International Workshop on Software Engineering for Computa-
tional Science and Engineering (SECSE09), pages 22-27, 2009.

Bronis R. de Supinski, Jeffrey K. Hollingworth, Shirley Moore, and
Patrick H. Worley. Results of the PERI survey of SciDAC applications.
Journal of Physics: Conference Series, 2007.

Glenn Downing, Paul F. Dubois, and Teresa Cottom. Data Sharing in
Scientific Simulations. Computing in Science €& Engineering, 6(3):87-96,
May-June 2004.

P. F. Dubois. Maintaining Correctness in Scientific Programs. Computing
in Science & Engineering, 7(3):80-85, May-June 2005.

P. F. Dubois, T. Epperly, and G. Kumfert. Why Johnny Can’t Build
(Portable Scientific Software). Computing in Science € FEngineering,
5(5):83-88, 2003.

Paul F. Dubois. Designing Scientific Components. Computing in Science
& Engineering, 4(5):84-90, September 2002.

[21]

[24]

[25]

[26]

[27]

Steve M. Easterbrook and Timothy C. Johns. Engineering the Software
for Understanding Climate Change. Computing in Science & Engineering,
11(6):65-74, November-December 2009.

Steven L. Eddins. Automated Software Testing for Matlab. Computing
in Science & Engineering, 11(6):48-55, 2009.

S. Faulk, J. Gustafson, P. M. Johnson, A. Porter, W. Tichy, and Lawrence
Votta. Measuring HPC Productivity. International Journal of High Per-
formance Computing Applications, 18(4), 2004.

S. Faulk, J. Gustafson, P. M. Johnson, W. Tichy, Lawrence Votta, and
A. Porter. Toward Accurate HPC Productivity Measurement. In Pro-

ceedings of the 26th International Conference on Software Engineering
(ICSE04), 2004.

Stuart Faulk, Eugene Loh, Michael L. Van De Vanter, Susan Squires, and
Lawrence G. Votta. Scientific Computing’s Productivity Gridlock: How
Software Engineering Can Help. Computing in Science & Engineering,
11(6):30-39, 2009.

Yolanda Gil, Pedro A. Gonzéalez-Calero, and Ewa Deelman. On the Black
Art of Designing Computational Workflows. In 2nd Workshop on Work-
flows in Support of Large-Scale Science, pages 53—62. ACM, 2007.

Robert Gray and Diane Kelly. Investigating Test Selection Techniques for
Scientific Software Using Hook’s Mutation Sensitivity Testing. In Third
International Workshop on Software Engineering for Computational Sci-
ence and Engineering (SECSE10), May 2010.

C. Greenough and D. J. Worth. Computational Science and Engineering
Department Software Development Best Practice. Technical Report RAL-
TR~2008-022, SFTC Rutherford Appleton Laboratory, 2008.

J. Gustafson. Purpose-Based Benchmarks. International Journal of High
Performance Computing Applications, 18(4):475-487, 2004.

Jo Erskine Hannay, Hans Petter Langtangen, Carolyn MacLeod, Dietmar
Pfahl, Janice Singer, and Greg Wilson. How Do Scientists Develop and Use
Scientific Software? In Second International Workshop on Software En-
gineering for Computational Science and Engineering (SECSE09), 2009.

L. Hatton. The T Experiments: Errors in Scientific Software. Computa-
tional Science & Engineering, 4(2):27-38, 1997.

L. Hatton and A. Roberts. How Accurate is Scientific Software? IFEE
Transactions on Software Engineering, 20(10):785-797, 1994.

[33]

[34]

[35]

[36]

[43]

Michael A. Heroux. Improving CSE Software Through Reproducibility
Requirements. In Fourth International Workshop on Software Engineer-
ing for Computational Science and Engineering (SECSE11), pages 28-31,
2011.

Michael A. Heroux and James M. Willenbring. Barely-Sufficient Software
Engineering: 10 Practices to Improve Your CSE Software. In Second In-

ternational Workshop on Software Engineering for Computational Science
and Engineering (SECSE09), 2009.

L. Hochstein and V. R. Basili. The ASC-Alliance Projects: A Case Study
of Large-Scale Parallel Scientific Code Development. IEEE Computer,
41(3):50-58, March 2008.

L. Hochstein, J. Carver, F. Shull, S. Asgari, V. R. Basili, J. Hollingsworth,
and M. Zelkowitz. Parallel Programmer Productivity: A Case Study
of Novice HPC Programmers. In Proceedings of Supercomputing 2005
(SC05), 2005.

Lorin M. Hochstein, Forrest Shull, and Lynn B. Reid. The Role of MPI
in Development Time: a Case Study. In Proceedings of Supercomputing
2008 (SC08), pages 1-10, 2008.

Daniel Hook and Diane Kelly. Mutation Sensitivity Testing. Computing
in Science & Engineering, 11(6):40-47, 2009.

Daniel Hook and Diane Kelly. Testing for Trustworthiness in Scientific
Software. In Second International Workshop on Software Engineering for
Computational Science and Engineering (SECSE09), May 2009.

James Howison and James D. Herbsleb. Scientific Software Production.
In Proceedings of the Computer Support for Cooperative Work 2011, 2011.

Jeffrey N. Johnson and Paul F. Dubois. Issue Tracking. Computing in
Science & Engineering, 5(6):71-77, November 2003.

Philip M. Johnson and Michael G. Paulding. Understanding HPC De-
velopment through Automated Process and Product Measurement with
Hackystat. In Second Workshop on Productivity and Performance in High-
End Computing, 2005.

M. Jones and C. Scaffidi. Obstacles and opportunities with using vi-
sual and domain-specific languages in scientific programming. In Visual
Languages and Human-Centric Computing 2011 (VLHCC11), pages 9-16,
September 2011.

Lucas N. Joppa, Greg Mclnerny, Richard Harper, Lara Salido, Kenji
Takeda, Kenton O’Hara, David Gavaghan, and Stephen Emmott. Trou-
bling Trends in Scientific Software Use. Science, 340(6134):814-815, 2013.

[45]

[46]

[51]

[52]

David Kane. Introducing Agile Development into Bioinformatics: An
Experience Report. In Proceedings of the Agile Development Conference
2005, 2005.

David Kane, Moses Hohman, Ethan Cerami, Michael McCormick, Karl
Kuhlmman, and Jeff Byrd. Agile Methods in Biomedical Software Devel-
opment: a Multi-Site Experience Report. BMC' Bioinformatics, 7(1):273,
2006.

Diane Kelly. A Study of Design Characteristics in Evolving Software Using
Stability as a Criterion. IEEFE Transactions on Software Engineering,
32(5):315-329, May 2006.

Diane Kelly. An Analysis of Process Characteristics for Developing Sci-
entific Software. Journal of Organizational and End-User Computing,
23(4):63-78, December 2011.

Diane Kelly, Nancy Cote, and Terry Shepard. Software Engineers and Nu-
clear Engineers: Teaming up to do Testing. In Proceedings of the Canadian
Nuclear Society Conference, June 2007.

Diane Kelly, Robert Gray, and Yizhen Shao. Examining Random and
Designed Tests to Detect Code Mistakes in Scientific Software. Journal of
Computational Science, 2(1):47-56, March 2011.

Diane Kelly and John Harauz. Software Development Processes and Anal-
ysis Software: A Mismatch and a Novel Framework. In Proceedings of the
Canadian Nuclear Society Conference, 2011.

Diane Kelly, Daniel Hook, and Rebecca Sanders. Five Recommended
Practices for Computational Scientists Who Write Software. Computing
in Science €& Engineering, 11(5):48-53, 2009.

Diane Kelly, Daniel Hook, and Rebecca Sanders. A Framework for Test-
ing Computational Software. In J. Leng and W. Sharrock, editors, Hand-
book of Research on Computational Science and Engineering: Theory and

Practice, pages 177-196. IGI Global, 2011.

Diane Kelly and Rebecca Sanders. Mismatch of Strategies: Scientific
Researchers and Commercial Software Suppliers, July 2007.

Diane Kelly and Rebecca Sanders. Assessing the Quality of Scientific
Software. In First International Workshop on Software Engineering for
Computational Science and Engineering (SECSE0S), May 2008.

Diane Kelly and Terry Shepard. A Little Knowledge about Software.
IEEFE Software, pages 46—48, March-April 2004.

Diane Kelly and Terry Shepard. Eight Maxims for Software Code Inspec-
tions. Journal of Software Testing, Verification, and Reliability, 14(4):243—
256, December 2004.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Diane Kelly and Terry Shepard. Task-Directed Inspection. Journal of
Systems and Software, 73(2):361-368, October 2004.

Diane Kelly, Spencer Smith, and Nicholas Meng. Software Engineering
for Scientists. Computing in Science €& Engineering, 13(5):7-11, 2011.

Diane Kelly, Stefan Thorsteinson, and Daniel Hook. Scientific Software
Testing: Analysis in Four Dimensions. IEEE Software, pages 84-90, May-
June 2011.

Diane F. Kelly. A Software Chasm: Software Engineering and Scientific
Computing. IEEFE Software, 24:120, 118-119, 2007.

R. Kendall, J. C. Carver, D. Fisher, D. Henderson, A. Mark, D. Post,
C. E. Rhoades Jr, and S. Squires. Development of a Weather Forecasting
Code: A Case Study. IEEE Software, 25(4):59-65, 2008.

R. P. Kendall, J. Carver, A. Mark, D. Post, S. Squires, and D. Shaffer.
Case Study of the Hawk Code Project. Technical Report LA-UR-05-9011,
Los Alamos National Laboratory, 2005.

R. P. Kendall, D. Post, S. Squires, and J. Carver. Case Study of the Eagle
Code Project. Technical Report LA-UR-06-1092, Los Alamos National
Laboratory, 2006.

Richard Kendall, Andrew Mark, Douglass Post, Susan Squires, and Chris-
tine Halverson. Case Study of the Condor Code Project. Technical report,
Los Alamos National Laboratory, 2005.

Richard P. Kendall, Andrew Mark, Susan E. Squires, and Christine A.
Halverson. Condor: Case Study of a Large-Scale, Physics-Based Code
Development Project. Computing in Science & Engineering, 12(3):22-27,
2010.

Richard P. Kendall, Douglass E. Post, and Andrew Mark. Case Study of
the Nene Code Project. Computing in Science & Engineering, 12(3):28—
33, 2010.

Sarah Killcoyne and John Boyle. Managing Chaos: Lessons Learned De-
veloping Software in the Life Sciences. Computing in Science € Engineer-
ing, 11(6):20-29, 2009.

D. J. Kuck. Productivity in High Performance Computing. International
Journal of High Performance Computing Applications, 18(4), 2004.

G. Kumfert and T. Epperly. Software in the DOE: The Hidden Overhead
of “The Build”. Technical Report UCRL-ID-147343, Lawrence Livermore
National Lab., February 2002.

Hans Petter Langtangen, A. M. Bruaset, and Ewald Quak. Advances in
Software Tools for Scientific Computing. Springer, 1999.

[72]

73]

[74]

78]

[79]

[80]

Y. Li. Reengineering a scientific software and lessons learned. In Fourth
International Workshop on Software Engineering for Computational Sci-
ence and Engineering (SECSE11), pages 41-45, 2011.

Patrick Martin, Anatol Kark, and Darlene Stewart, editors. 2nd Workshop
on Software Engineering for Science, November 2009.

David Matthews, Greg Wilson, and Steve Easterbrook. Configuration
Management for Large-Scale Scientific Computing at the UK Met Office.
Computing in Science & Engineering, November-December 2008.

Nicholas Jie Meng, Diane Kelly, and Thomas R. Dean. Towards the Pro-
filing of Scientific Software for Accuracy. In Proceedings of the IBM CAS-
CON 2011, November 2011.

Zeeya Merali. Error: Why Scientific Programming Does Not Compute.
Nature, 467:775-777, 2010.

C. Morris. Some lessons learned reviewing scientific code. In Proceedings
of the 30th International Conference on Software Engineering (ICSE08),
2008.

C. Morris and J. Segal. Some Challenges Facing Scientific Software De-
velopers: the Case of Molecular Biology. In 5th International IEEE Con-
ference on E-Science, pages 216-222, 2009.

R. Mugridge. Test Driven Development and the Scientific Method. In
Proceedings of the Agile Development Conference 2008, pages 47-52, 2003.

Luke Nguyen-Hoan, Shayne Flint, and Ramesh Sankaranarayana. A Sur-
vey of Scientific Software Development. In Proceedings of the ACM-IEEE
Internation Symposium on Empirical Software Engineering and Measure-
ment 2010, 2010.

Dianne P. O’Leary. Computational Software: Writing Your Legacy. Com-
puting in Science & Engineering, 8(1):78-83, 2006.

C. M. Pancake and C. Cook. What Users Need in Parallel Tool Sup-
port: Survey Results and Analysis. In Proceedings of the Scalable High-
Performance Computing Conference, 1994.

Victor Pankratius, Ali Jannesari, and Walter F. Tichy. Parallelizing
Bzip2: A Case Study in Multicore Software Engineering. IEEE Software,
26(6):70-77, 2009.

Joe Pitt-Francis, Miguel O. Bernabeu, Jonathan Cooper, Alan Garny,
Lee Momtahan, James Osborne, Pras Pathmanathan, Blanca Rodriguez,
Jonathan P. Whiteley, and David J. Gavaghan. Chaste: Using Agile
Programming Techniques to Develop Computational Biology Software.
Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 366(1878):3111-3136, September 2008.

[85]

[91]

[95]

D. E. Post and R. P. Kendall. Large-Scale Computational Scientific and
Engineering Code Development and Production Workflows. In Proceed-
ings of the 12th Workshop on Use of High Performance Computing in
Meteorology, October 2006.

D. E. Post and Richard P. Kendall. Software Project Management and
Quality Engineering Practices for Complex, Coupled Multi-Physics, Mas-
sively Parallel Computational Simulations: Lessons Learned from ASCI.
Technical Report LA-UR-03-1274, Los Alamos National Laboratory, 2003.

D. E. Post, Richard P. Kendall, and Robert F. Lucas. The Opportunities,
Challenges and Risks of High Performance Computing in Computational
Science and Engineering. Advances in Computers, pages 240-297, 2006.

Douglass E. Post and Lawrence G. Votta. Computational Science De-
mands a New Paradigm. Physics Today, 58(1):35-41, January 2005.

Yann Pouillon, Jean-Michel Beuken, Thierry Deutsch, Marc Torrent, and
Xavier Gonze. Organizing Software Growth and Distributed Development:
The Case of Abinit. Computing in Science & Engineering, 13(1):62-69,
2011.

Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu
Huang, Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh,
Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and
David I. August. A Survey of the Practice of Computational Science.
In Proceedings of the 24th ACM/IEEE Conference on High Performance
Computing, Networking, Storage and Analysis, 2011.

James Quirk. Computational Science: Same Old Silence, Same Old Mis-
takes, Something More Is Needed.... In Tomasz Plewa, Timur Linde,
and V. Gregory Weirs, editors, Adaptive Mesh Refinement: Theory and
Applications, volume 41 of Lecture Notes in Computational Science and
Engineering, pages 3-28. Springer, 2005.

Karthik Ram. Git can facilitate greater reproducibility and increased
transparency in science. Source Code for Biology and Medicine, 8(1):7,
2013.

Patrick J. Roache. Building PDE Codes to be Verifiable and Validatable.
Computing in Science & Engineering, 6(5):30-38, 2004.

A. Rodman and M. Brorsson. Programming Effort vs. Performance with
a Hybrid Programming Model for Distributed Memory Parallel Architec-
tures. In P. Amestoy, P. Berger, M. Daydé, 1. Duff, V. Frayssé, L. Giraud,
and D. Ruiz, editors, Furo-Par’99: 5th International Euro-Par Confer-
ence, volume 1685, pages 888-898. Springer, September 1999.

R. Sanders. The Development and Use of Scientific Software. Master’s
thesis, Queen’s University, 2008.

[96]

[97]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

R. Sanders and D. Kelly. Dealing with Risk in Scientific Software Devel-
opment. IEEE Software, 25(4):21-28, July-August 2008.

Rebecca Sanders and Diane Kelly. The Challenge of Testing Scientific
Software. In Proceedings of the Conference for the Association for Software
Testing, pages 30-36, July 2008.

J. Segal. Two Principles of End-User Software Engineering Research. In
1st Workshop on End User Software Engineering, May 2005.

J. Segal. Some Problems of Professional End User Developers. In IEEE
Symposium on Visual Languages and Human-Centric Computing, pages

111-118, 2007.

J. Segal. Models of Scientific Software Development. In First Interna-
tional Workshop on Software Engineering for Computational Science and
Engineering (SECSEO0S), 2008.

J. Segal. Scientists and Software Engineers: A Tale of Two Cultures. In
Proceedings of the Psychology of Programming Interest Group, 2008.

J. Segal. Software Development Cultures and Cooperation Problems: a
Field Study of the Early Stages Of Development of Software for a Scientific
Community. Computer Supported Cooperative Work, 18(5/6):581-606,
20009.

J. Segal. Some Challenges Facing Software Engineers Developing Software
for Scientists. In Second International Workshop on Software Engineering
for Computational Science and Engineering (SECSE09), pages 9-14, 2009.

J. Segal and S. Clarke. Software Engineers Don’t Know Everything About
End-User Programming. IEEE Software, September-October 2009.

J. Segal and C. Morris. Developing Scientific Software. IEEE Software,
25(4):18-20, 2008.

J. Segal and C. Morris. Developing Software For A Scientific Community:
Some Challenges And Solutions. In J. Leng and W. Sharrock, editors,
Handbook of Research on Computational Science and Engineering: Theory
and Practice, pages 177-196. IGI Global, 2011.

J. Segal and C. Morris. Scientific End-User Developers and Barriers to
Use/Customer Engagement. Journal of Organizational and End User
Computing, 23(4):51-63, 2011.

Judith Segal. When Software Engineers Met Research Scientists: A Case
Study. Empirical Software Engineering, 10(4):517-536, 2005.

Judith Segal, Diane Kelly, and Jeffrey Carver. Guest Editorial Preface:
Special Issue on Scientific End User Computing. Journal of Organizational
and End User Computing, 23(4), December 2011.

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

18]

[119]

[120]

[121]

David E. Skinner, Jon Stearley, John Hules, and Jon Bashor. Report
of the 3rd DOE Workshop on HPC Best Practices: Software Lifecycles.
Technical report, US Department of Energy, September 2009.

M. T. Sletholt, J. Hannay, D. Pfahl, H. C. Benestad, and H. P. Lang-
tangen. A literature review of agile practices and their effects in scientific
software development. In Fourth International Workshop on Software En-
gineering for Computational Science and Engineering (SECSE11), pages
1-9, 2011.

M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen. What do we
know about scientific software development’s agile practices? Computing
in Science €& Engineering, 14(2):24-37, March-April 2012.

W. Spencer Smith, Lei Lai, and Ridha Khedri. Requirements Analysis for
Engineering Computation: A Systematic Approach for Improving Soft-
ware Reliability. Reliable Computing, 13:83-107, 2007.

Susan Squires, Michael L. Van De Vanter, and Lawrence G. Votta. Soft-
ware Productivity Research in High Performance Computing. CTWatch
Quarterly, 2006.

Susan Squires, Michael L. Van De Vanter, and Lawrence G. Votta.
Yes, there is an ”expertise gap” in hpc applications development. In
Third Workshop on Productivity and Performance in High-End Comput-
ing (PPHEC06), 2006.

T. Sterling. Productivity Metrics and Models for High Performance Com-
puting. International Journal of High Performance Computing Applica-
tions, 18(4), 2004.

Victoria Stodden, Peixuan Guo, and Zhaokun Ma. Toward Reproducible
Computational Research: An Empirical Analysis of Data and Code Policy
Adoption by Journals. PLoS ONE, 8(6):e67111, 06 2013.

Jin Tang. Developing Scientific Computing Software: Current Processes
and Future Directions. Master’s thesis, McMaster University, 2008.

Michele Vallisneri and Stanislav Babak. Python and XML for Agile Sci-
entific Computing. Computing in Science & Engineering, 10(1):80-87,
January 2008.

Gregory R. Watson and Nathan A. DeBardeleben. Developing Scientific
Applications Using Eclipse. Computing in Science & Engineering, 8(4):50—
61, 2006.

Gregory R. Watson and Craig E. Rasmussen. A Strategy for Addressing
the Needs of Advanced Scientific Computing Using Eclipse as a Paral-
lel Tools Platform. Technical report, Los Alamos National Laboratory,
December 2005.

10

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

James M. Willenbring, Michael A. Heroux, and Robert T. Heaphy. The
Trilinos Software Lifecycle Model. In Proceedings of the 3rd International
Workshop on Software Engineering for High Performance Computing Ap-
plications, 2007.

Greg Wilson. Software Carpentry: Getting Scientists to Write Better Code
by Making Them More Productive. Computing in Science & Engineering,
November-December 2006.

Greg Wilson. Where’s the Real Bottleneck in Scientific Computing?
American Scientist, January-February 2006.

Greg Wilson. Those Who Will Not Learn From History... Computing in
Science & Engineering, May-June 2008.

Greg Wilson. How Do Scientists Really Use Computers? American Sci-
entist, 97(5):8-10, September-October 2009.

Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt
Davis, Richard T. Guy, Steven H.D. Haddock, Kathryn D. Huff, Tan M.
Mitchell, Mark D. Plumbley, Ben Waugh, Ethan P. White, and Paul Wil-
son. Best practices for scientific computing. PLoS Biology, 12(1):e1001745,
January 2014.

Greg Wilson and Andrew Lumsdaine. Software Engineering and Com-
putational Science. Computing in Science & Engineering, 11(6):12-13,
2009.

Gregory V. Wilson. What Should Computer Scientists Teach to Physical
Scientists and Engineers? [IEEE Computational Science € Engineering,
Summer-Fall 1996.

Nicole Wolter, Michael O. McCracken, Allan Snavely, Lorin Hochstein,
Taiga Nakamura, and Victor Basili. What’s Working in HPC: Investigat-
ing HPC User Behavior and Productivity. CTWatch Quarterly, 2(4A):9-
17, November 2006.

William A. Wood and William L. Kleb. Exploring XP for Scientific Re-
search. IEEFE Software, 20(3):30-36, 2003.

11

