The following pre-print is now available on arXiv:
D.A. Aruliaha, C. Titus Brownb, Neil P. Chue Hongc, Matt Davisd, Richard T. Guye, Steven H.D. Haddockf, Katy Huffg, Ian Mitchellh, Mark Plumbleyi, Ben Waughj, Ethan P. Whitek, Greg Wilsonl, and Paul Wilsong.
aUniversity of Ontario Institute of Technology, bMichigan State University, cSoftware Sustainability Institute, dSpace Telescope Science Institute, eUniversity of Toronto, fMonterey Bay Aquarium Research Institute, gUniversity of Wisconsin, hUniversity of British Columbia, iQueen Mary University London, jUniversity College London, kUtah State University, and lSoftware Carpentry.
AbstractScientists spend an increasing amount of time building and using software. However, most scientists are never taught how to do this efficiently. As a result, many are unaware of tools and practices that would allow them to write more reliable and maintainable code with less effort. We describe a set of best practices for scientific software development that have solid foundations in research and experience, and that improve scientists' productivity and the reliability of their software.
Originally posted 2012-10-03 by Greg Wilson in Content, Research.
comments powered by Disqus